MAX materials and MXene materials are new two-dimensional materials which have attracted much attention in recent years, with excellent physical, chemical, and mechanical properties, and also have shown broad application prospects in lots of fields. The following is an in depth overview of the properties, applications, and development trends of MAX and MXene materials.
What is MAX material?
MAX phase material is actually a layered carbon nitride inorganic non-metallic material composed of M, A, X elements around the periodic table, collectively referred to as “MAX phase”. M represents transition metal elements, like titanium, zirconium, hafnium, etc., A represents the primary group elements, such as aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer consists of M, A, X, three of the components of the alternating composition arrangement, with hexagonal lattice structure. Because of their electrical conductivity of metal and strength, high-temperature resistance and corrosion resistance of structural ceramics, they may be popular in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding along with other fields.
Properties of MAX material
MAX material is actually a new form of layered carbon nitride inorganic non-metallic material with the conductive and thermal conductive qualities of metal, comprising three elements with all the molecular formula of Mn 1AXn (n=1, 2 or 3), where M refers back to the transition metal, A refers to the main-group elements, and X refers to the aspects of C and N. The MXene material is really a graphene-like structure obtained by the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MAX Phases and MXenes are novel two-dimensional nanomaterials made up of carbon, nitrogen, oxygen, and halogens.
Applications of MAX materials
(1) Structural materials: the excellent physical properties of MAX materials make sure they are have an array of applications in structural materials. As an example, Ti3SiC2 is a common MAX material with good high-temperature performance and oxidation resistance, which can be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials can also be used in functional materials. For instance, some MAX materials have good electromagnetic shielding properties and conductivity and can be used to manufacture electromagnetic shielding covers, coatings, etc. Furthermore, some MAX materials also provide better photocatalytic properties, and electrochemical properties can be utilized in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which may be utilized in energy materials. For instance, K4(MP4)(P4) is one of the MAX materials rich in ionic conductivity and electrochemical activity, which can be used a raw material to produce solid-state electrolyte materials and electrochemical energy storage devices.
What Exactly are MXene materials?
MXene materials certainly are a new kind of two-dimensional nanomaterials obtained by MAX phase treatment, like the structure of graphene. The top of MXene materials can connect with more functional atoms and molecules, along with a high specific surface area, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation strategies for MXene materials usually include the etching treatment of the MAX phase as well as the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties including electrical conductivity, magnetism and optics could be realized.
Properties of MXene materials
MXene materials certainly are a new type of two-dimensional transition metal carbide or nitride materials comprising metal and carbon or nitrogen elements. These materials have excellent physical properties, such as high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., along with good chemical stability and the ability to maintain high strength and stability at high temperatures.
Uses of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and are widely used in energy storage and conversion. As an example, MXene materials can be used electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. Additionally, MXene materials may also be used as catalysts in fuel cells to boost the activity and stability from the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity can be utilized in electromagnetic protection. For instance, MXene materials bring electromagnetic shielding coatings, electromagnetic shielding cloth, and other applications in electronic products and personal protection, enhancing the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and can be utilized in sensing and detection. For example, MXene materials bring gas sensors in environmental monitoring, which could realize high sensitivity and selectivity detection of gases. In addition, MXene materials could also be used as biosensors in medical diagnostics along with other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. In the future, with the continuous progress of technology and science as well as the increasing demand for applications, the preparation technology, performance optimization, and application parts of MAX and MXene materials will be further expanded and improved. The subsequent aspects could become the main objective of future research and development direction:
Preparation technology: MAX and MXene materials are mostly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. Down the road, new preparation technologies and techniques may be further explored to comprehend a much more efficient, energy-saving and eco-friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials is definitely high, there is however still room for further optimization. In the future, the composition, structure, surface treatment as well as other facets of the content may be studied and improved in depth to improve the material’s performance and stability.
Application areas: MAX materials and MXene materials have already been commonly used in numerous fields, but there are still many potential application areas to become explored. Down the road, they may be further expanded, like in artificial intelligence, biomedicine, environmental protection and other fields.
To conclude, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show a wide application prospect in many fields. Using the continuous progress of science and technology as well as the continuous improvement of application demand, the preparation technology, performance optimization and application regions of MAX and MXene materials is going to be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.